Stromal fibroblast heparan sulfate is required for cytokine-mediated ex vivo maintenance of human long-term culture-initiating cells

Author:

Gupta P1,McCarthy JB1,Verfaillie CM1

Affiliation:

1. Department of Medicine, University of Minnesota, Minneapolis 55455, USA.

Abstract

We have recently demonstrated that 50% of primitive human long-term culture-initiating cells (LTC-IC) are maintained for up to 8 weeks in stroma-dependent cultures in which progenitor-stroma contact is prevented (stroma noncontact), or when progenitors are cultured in medium conditioned by stromal feeders. This indicates that factors responsible for LTC-IC maintenance are present in soluble form in stromal supernatant (SN). Although the picogram concentrations of cytokines present in stromal SN can induce the differentiation of CD34+/HLA-DR- (DR-) cells to clonogenic cells (colony forming cells; CFC), they maintain only 10% of LTC-IC for 5 weeks, suggesting that factors other than these cytokines are required for LTC-IC maintenance. To characterize the factor(s) in stromal SN responsible for LTC-IC maintenance, we purified glycoproteins and proteoglycans (PG) from the SN of the LTC-IC supportive murine marrow stromal fibroblast cell line M2–10B4 by ion exchange high performance liquid chromatography (HPLC). Culture of DR- cells in a combination of M2–10B4-derived PG, but not glycoproteins and picogram concentrations of recombinant human interleukin-6 (IL-6), granulocyte colony-stimulating factor (G-CSF), stem cell factor (SCF), leukemia inhibitory factor (LIF), granulocyte- macrophage colony-stimulating factor (GM-CSF), and macrophage inflammatory protein-1alpha (MIP-1alpha) resulted in the recovery of 96% +/- 8% of LTC-IC maintained in cultures supplemented with unfractionated stromal SN. LTC-IC maintenance was largely retained after digestion of the PG-rich fraction with proteinase K and after dissociative gel filtration chromatography, but was completely abolished following treatment with nitrous acid, which digests heparan sulfate glycosaminoglycans (HS GAG). As for M2–10B4-derived HS GAG, high concentrations of bovine kidney HS GAG, but not bovine tracheal chondroitin sulfate, significantly improved cytokine-mediated LTC-IC maintenance. Maintenance of LTC-IC by these nonmarrow-derived HS GAG was, however, significantly lower than that seen with M2–10B4-derived HS. These studies demonstrate a role for marrow stroma-derived HS GAG in the long-term in vitro maintenance of human LTC-IC. Further structure-function analysis of these HS GAG may have important implications for ex vivo stem cell expansion and gene transfer into hematopoietic progenitors.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3