Recombinant human interleukin-11 stimulates megakaryocytopoiesis and increases peripheral platelets in normal and splenectomized mice

Author:

Neben TY1,Loebelenz J1,Hayes L1,McCarthy K1,Stoudemire J1,Schaub R1,Goldman SJ1

Affiliation:

1. Division of Preclinical Biology, Genetics Institute, Cambridge, MA 02140.

Abstract

Abstract The effects of recombinant human interleukin-11 (rhIL-11) on in vivo mouse megakaryocytopoeisis were examined. Normal C57Bl/6 mice and splenectomized C57Bl/6 mice were treated for 7 days with 150 micrograms/kg rhIL-11 administered subcutaneously. In normal mice, peripheral platelet counts were elevated compared with vehicle-treated controls after 3 days of rhIL-11 treatment and remained elevated until day 10. Splenectomized mice treated with rhIL-11 showed elevated peripheral platelet counts that were similar in magnitude to normal rhIL-11-treated mice. However, on day 10 the platelet counts in rhIL-11- treated, splenectomized mice were no longer elevated. Analysis of bone marrow megakaryocyte ploidy by two-color flow cytometry showed an increase, relative to controls, in the percentage of 32N megakaryocytes in both normal and splenectomized animals treated with rhIL-11. In normal mice, the number of spleen megakaryocyte colony-forming cells (MEG-CFC) were increased twofold to threefold relative to controls after 3 and 7 days of rhIL-11 treatment, whereas the number of bone marrow MEG-CFC were increased only on day 7. The number of MEG-CFC in the bone marrow of rhIL-11-treated, splenectomized mice was increased twofold compared with controls on both days 3 and 7 of the study. These data show that in vivo treatment of normal or splenectomized mice with rhIL-11 increased megakaryocyte progenitors, stimulated endoreplication of bone marrow megakaryocytes, and increased peripheral platelet counts. In addition, results in splenectomized mice showed that splenic hematopoiesis was not essential for the observed increases in peripheral platelets in response to rhIL-11 administration.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3