Efficient expression of functional human MDR1 gene in murine bone marrow after retroviral transduction of purified hematopoietic stem cells

Author:

Licht T1,Aksentijevich I1,Gottesman MM1,Pastan I1

Affiliation:

1. Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892–4255, USA.

Abstract

A procedure for efficient transfer of the human MDR1 (multi-drug resistance) gene into murine hematopoietic stem cells was developed. Cells expressing Sca-1 but no lineage-specific or major histocompatibility complex (MHC) class II antigens (Lin-MHC II-Sca-1+) were enriched from 5-fluorouracil-pretreated bone marrow by Ficoll density-gradient and immunomagnetic sorting. Purified cells were cocultured with growth factors and fibroblasts producing replication- deficient retroviruses containing human MDR1 cDNA. Fluorescence- activated cell sorter analysis and rhodamine-123 efflux experiments showed that greater than 60% of cocultured hematopoietic cells expressed functional human P-glycoprotein. After 6 to 8 days, hematopoietic cells were injected intravenously into sublethally irradiated SCID mice. Stem cell properties of the isolated population were confirmed by sustained expression of MDR1 marker cDNA for greater than 4 to 6 months after transplantation, multilineage engraftment, and presence of MDR1 cDNA in bone marrow of secondary recipient mice after retransplantation. Reconstitution of H-2K-mismatched SCID mice showed high engraftment capacity of Lin-MHC II-Sca-1+ cells. MDR1 cDNA was detected in blood of 78% of recipients. P-glycoprotein was expressed in bone marrow of 71% of mice, in both lymphocytes and myelomonocytoid progenitors. P-glycoprotein function in host marrow was confirmed by rhodamine-123 efflux. Transduction of P-glycoprotein may be useful for gene therapy in two ways: to protect bone marrow from myelosuppression after chemotherapy and as a selectable marker in vivo for the introduction of otherwise nonselectable genes.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3