Affiliation:
1. Department of Molecular Biology, Princeton University NJ; 08544–1014, USA.
Abstract
Abstract
Plasma fibronectin (pFN) cross-linked to fibrin during the injury response provides a provisional matrix required for cells to begin tissue repair. Using a synthetic matrix of pFN and fibrin as a substrate for cell adhesion and spreading, we have determined that pFN covalently cross-linked to fibrin into a complex multimer is functionally distinct from pFN immobilized onto a plastic surface. NIH- 3T3 cells on a FN-fibrin matrix reach 50% of the maximal cell area of cells spread on FN-coated plastic. They neither attach nor spread on cross-linked fibrin alone. Cells on pFN-fibrin matrices form few prominent stress fibers and exhibit clear differences in membrane ruffling and filopodial extension when stained with rhodamine-labeled phalloidin. Interestingly, these differences are enhanced by upregulation of protein kinase C. These data suggest that cell-FN interactions can be modified by the molecular context of the protein within the extracellular matrix resulting in distinct cell morphology and cytoskeletal organization.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献