Are there functional gap junctions or junctional hemichannels in macrophages?

Author:

Alves LA1,Coutinho-Silva R1,Persechini PM1,Spray DC1,Savino W1,Campos de Carvalho AC1

Affiliation:

1. Departamento de Imunologia, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil.

Abstract

Abstract The existence of functional gap junctions in migratory cells of the immune system is a controversial issue. In this report, we have focused on one particular cell type, namely the macrophages, because connexin- 43, a protein that forms gap junctions, has been described in peritoneal macrophages and a macrophage cell line (J774), by Northern and Western blot analysis. To test whether these cell types expressed functional gap junctions, we assayed dye coupling by intracellular injection of Lucifer Yellow. We observed that nonstimulated macrophages are not coupled among themselves and did not form functional gap junctions with an epithelial cell line, which expresses functional gap junctions formed by connexin-43. Dye coupling was also not detected between macrophages previously activated by lipopolysaccharide or interferon-gamma. We further examined the presence of functional coupling using the more sensitive technique of dual whole cell patch- clamp, and again, did not find electrical coupling between macrophages, consistent with the dye microinjection data. We also examined the possible presence of hemigap junction channels activated by extracellular adenosine triphosphate (ATP) using a dye uptake assay and the whole cell patch-clamp technique. Conditions expected to close gap junction hemichannels (exposure to octanol and low intracellular pH) did not decrease ATP-induced Lucifer Yellow uptake, whereas conditions expected to increase hemichannel opening either did not affect ATP permeabilization (dibutyryl adenosine monophosphate) or decreased it (zero extracellular CA+2). Finally, in experiments using resident macrophages derived from conexin-43 knockout mice, we observed ATP induced dye uptake. Our experimental data thus indicate that macrophages in vitro do not form functional gap junctions and that the permeability pathway activated by extracellular ATP is not formed by a hemigap junction channel.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3