Homodimerization of Erythropoietin Receptor by a Bivalent Monoclonal Antibody Triggers Cell Proliferation and Differentiation of Erythroid Precursors

Author:

Schneider Helmut1,Chaovapong Warak1,Matthews David J.1,Karkaria Cyrus1,Cass Robert T.1,Zhan Hangjun1,Boyle Mark1,Lorenzini Tony1,Elliott Steve G.1,Giebel Lutz B.1

Affiliation:

1. From the Department of Receptor Biology, Arris Pharmaceutical Corp, South San Francisco; and the Amgen Center, Amgen, Thousand Oaks, CA.

Abstract

AbstractErythropoietin (EPO) stimulates proliferation and differentiation of erythroid progenitor cells. Several lines of evidence indicate that the most likely mechanism of EPO receptor (EPO-R) activation by EPO is homodimerization of the receptor on the surface of erythrocyte precursors. Therefore, we argued that it should be possible to raise EPO-R monoclonal antibodies (MoAbs) that would activate the receptor by dimerization and thus mimic EPO action. We have identified such an agonist MoAb (MoAb34) directed against the extracellular EPO binding domain of the EPO-R. This bivalent IgG antibody triggers the proliferation of EPO-dependent cell lines and induces differentiation of erythroid precursors in vitro. In contrast, the monovalent Fab fragment, which cannot dimerize the receptor, is completely inactive. The mechanism of receptor activation by homodimerization implies that at high ligand concentrations the formation of 1:1 receptor/ligand complexes is favored over 2:1 complexes, thereby turning the ligand agonist into an antagonist. Thus, EPO and MoAb34 should self-antagonize at high concentrations in both cell proliferation and differentiation assays. Our data indeed demonstrate that EPO and MoAb34 antagonize ligand-dependent cell proliferation with IC50 values of approximately 20 and 2 μmol/L, respectively. Erythroid colony formation (BFUe) is inhibited at MoAb34 concentrations above 1 μmol/L. Furthermore, we analyzed the MoAb34:EPO-R interaction using a mathematic model describing antibody-mediated receptor dimerization. The data for proliferation and differentiation activity were consistent with the receptor dimer formation on the cell surface predicted by the model.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3