In vitro antioxidant treatment recovers proliferative responses of anergic CD4+ lymphocytes from human immunodeficiency virus-infected individuals

Author:

Cayota A1,Vuillier F1,Gonzalez G1,Dighiero G1

Affiliation:

1. Unite d' Immunohematologie et d'Immunopathologie, Institut Pasteur, Paris France.

Abstract

Oxidative stress has been proposed to be involved in the immunologic defeat observed in effector calls of the immune system as well as in lymphocyte cell death and viral replication in human immunodeficiency virus (HIV)-infected patients. Because thiol-containing antioxidants such as N-acetyl-L-cysteine have been shown to have beneficial effects on CD4+ lymphocyte survival and to inhibit programmed cell death and HIV-1 replication, they may play a role in therapeutic strategies of this disease. In this work we have studied the cellular thiol levels and the affect of in vitro antioxidant treatment of purified CD4+ lymphocytes from HIV-infected patients, and correlated these parameters to proliferative responses and programmed cell death. We show that CD4+ lymphocytes from HIV-infected patients display impaired proliferative responses and a significant decrease in cellular thiol levels, indicating a disturbed redox status. Interestingly, antioxidant treatment succeeded to restore defective proliferative responses to CD3- mediated activation in 8 of 11 patients (high antioxidant responders). In contrast to high responders, patients failing to respond to antioxidant treatment (low antioxidant responders), were characterized by an abnormal ratio of apoptotic cells, which was not affected by N- acetyl-L-cysteine and/or 2-beta-mercaptoethanol preincubation. These results demonstrate for the first time that antioxidant treatment is able to revert the impaired proliferative activity of CD4 cells from HIV-infected patients and could help designing therapeutic strategies with antioxidant drugs. However, this action is not observed in cells undergoing programmed cell death.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3