High levels of human glucocerebrosidase activity in macrophages of long- term reconstituted mice after retroviral infection of hematopoietic stem cells

Author:

Correll PH1,Colilla S1,Dave HP1,Karlsson S1

Affiliation:

1. Molecular and Medical Genetics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892.

Abstract

Abstract Gaucher disease is a leading candidate for somatic gene therapy using bone marrow (BM) cells as target tissue. Towards this end, we have constructed a retroviral vector (LG) in which the human glucocerebrosidase (GC) cDNA is driven by the Moloney murine leukemia virus (MoMLV) long terminal repeat (LTR). Day 12 to 14 colony-forming unit-spleen progenitor cells were infected by the LG virus with a 100% efficiency, and GC messenger RNA (mRNA) and protein were detected in the progeny of these cells. Tissues from long-term reconstituted mice analyzed 8 months posttransplantation with LG-infected BM contained the intact provirus at greater than 1 copy per cell, indicating effective infection of hematopoietic stem cells. Human GC mRNA generated by the viral LTR was detected in macrophages as well as other hematopoietic cells. Enzyme activity was increased fivefold and twofold in macrophages from BM and spleen, respectively, and could be precipitated with an antibody specific for human GC. Immunohistochemical analysis detected the human GC protein in 81% of the macrophages from five recipient mice. These data indicate that, after transduction of hematopoietic stem cells, the LG vector is capable of directing expression of human GC in the majority of macrophages from long-term reconstituted mice and producing enzyme levels comparable with endogenous mouse activity, suggesting that this virus may be useful in the treatment of Gaucher disease.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3