Distinct temporal patterns of defensin mRNA regulation during drug- induced differentiation of human myeloid leukemia cells

Author:

Herwig S1,Su Q1,Zhang W1,Ma Y1,Tempst P1

Affiliation:

1. Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, N.Y. 10021, USA.

Abstract

Abstract Defensins are microbicidal peptides and the principal constituents of neutrophil primary granules. They are presumed to play a prominent role in innate host defenses. We examined defensin mRNA levels during drug-induced differentiation of the promyelocytic leukemia cell line, HL-60. Transcription was restricted to promyelocyte, myelocyte, and very early metamyelocyte stages of the granulocytic pathway. Complete downregulation occurred during late granulocytic maturation or early during phorbol ester-promoted differentiation along the monocyte/macrophage lineage. Retinoic acid (RA) was the strongest inducer of defensin mRNA accumulation, even at doses too low to effect morphologic changes; the initial (first 48 hours), gradual increase resulted from transcriptional activation and was enhanced by granulocyte colony-stimulating factor. In contrast, addition of hybrid polar compounds led to a transient, drug-specific downregulation within the same time period, apparently by means of selectively induced, biphasic degradation of transcripts. Subsequent increase in transcript levels was faster and more pronounced with hexamethylene bisacetamide, relative to dimethyl sulfoxide (DMSO). DMSO-promoted effects were strikingly different in serum-free medium or in the presence of the tyrosine kinase inhibitor, genistein. Under these conditions, and although differentiation was unaffected, early defensin mRNA downregulation was final. The effect did not occur with RA and expression of other myeloid-specific genes was also unchanged. Addition of selected cytokines caused a similar “dip,” only at earlier times and uncoupled from differentiation. Tumor necrosis factor-alpha markedly induced defensin levels after 2 days in previously untreated HL-60 cells, but inhibited expression in RA-differentiated cells. These results begin to detail a complex regulation of defensin mRNA synthesis with both spatial and temporal control elements, and a unique modulation by chemical agents, cytokines, and serum-factors.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3