High-molecular-weight kininogen is exclusively membrane bound on endothelial cells to influence activation of vascular endothelium

Author:

Hasan AA1,Cines DB1,Ngaiza JR1,Jaffe EA1,Schmaier AH1

Affiliation:

1. Department of Internal Medicine, University of Michigan, Ann Arbor 48109-0724, USA.

Abstract

An important biologic function of high-molecular-weight kininogen (HK) is to deliver bradykinin (BK) to its cellular receptors. Internalization and degradation of HK may provide a mechanism by which endothelial cells modulate the production of BK and control its activities. Therefore, we investigated the binding and subsequent distribution of biotinylated-HK (biotin-HK) associated with human umbilical vein endothelial cells (HUVEC). HUVEC bound 3 to 4 times more HK and with greater avidity at 1 to 3 hours at 37 degrees C than at 4 degrees C (Bmax = 1.0 +/- 0.02 x 10(7) molecules/cell, kd = 7 +/- 3 nmol/L v Bmax = 2.6 +/- 0.2 x 10(6) molecules/cell, kd = 46 +/- 8 nmol/L). However, there was no evidence that the difference was caused by internalization of HK at the higher temperature. First, the same amount of biotin-HK was associated with nonpermeabilized and permeabilized HUVEC using buffers containing 20 to 50 mumol/L zinc ion in the absence or presence of 2 mmol/L calcium ion. Second, binding of biotin-HK to HUVEC was approximately 92% reversible at 1 hour when the cells were maintained at both 37 degrees C and 4 degrees C. Third, neither chloroquine nor primaquine altered the amount of biotin-HK bound to HUVEC. Fourth, biotin-HK bound to HUVEC was almost completely removed by pronase. Fifth, the nonpermeable dye, crystal violet, almost completely quenched the fluorescence signal emitted by HUVEC-associated fluorescein isothiocyanate (FITC) HK. Finally, the localization of HUVEC-bound FITC-HK was restricted to the membrane as shown by laser scanning confocal microscopy. The expression of HK binding sites had an absolute requirement for metabolic energy, but was not dependent on new protein synthesis. Membrane-bound HK contributed to the anticoagulant nature of endothelial cells by blocking human alpha-thrombin binding and its resultant induction of prostacyclin formation. These studies indicate that HK is not internalized by HUVEC, but remains primarily on cell surfaces to be accessible for BK liberation and to modulate the binding and actions of alpha-thrombin.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3