Affiliation:
1. Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis 46202–5121.
Abstract
Abstract
The replating capability of human umbilical cord blood (CB) multipotential (CFU-GEMM) progenitors was assessed in vitro as an estimate of self-renewal using erythropoietin (Epo), steel factor (SLF), and either fetal bovine serum (FBS) or CB plasma. This study found a much higher replating efficiency for CB CFU-GEMM than previously reported, in terms of the percentage of colonies that could be replated, the number of secondary colonies per replated primary colony, and the size of secondary colonies. Moreover, the majority of secondary colonies were CFU-GEMM-derived. Although the percentages of bone marrow CFU-GEMM that replate was similar to that for CB CFU-GEMM and the sizes of secondary bone marrow and CB CFU-GEMM were also similar, replated CB CFU-GEMM gave rise to far greater numbers of secondary colonies. No tertiary colonies were observed when secondary CFU-GEMM were replated. Detection of extensive secondary replating potential was enhanced by the addition of CB plasma to the cultures. This activity was not found in either adult blood (PB) plasma, umbilical cord vein endothelial cell-conditioned medium (ECCM), FBS plus ECCM, or FBS plus the combination of interleukin-1 (IL-1), IL-3, IL-6, IL-11, granulocyte colony-stimulating factor, and granulocyte- macrophage colony-stimulating factor. Whether the CB plasma-enhancing activity for CFU-GEMM replating capacity is attributable to a novel factor or factors, or represents effects of other known cytokines, alone or in combination, remains to be determined. Of particular relevance, these studies suggest that human CFU-GEMM have some degree of stemness and perhaps should be classified as a subset of stem cells.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献