Platelet-activating factor primes neutrophil responses to agonists: role in promoting neutrophil-mediated endothelial damage

Author:

Vercellotti GM1,Yin HQ1,Gustafson KS1,Nelson RD1,Jacob HS1

Affiliation:

1. Department of Medicine, University of Minnesota Medical School, Minneapolis.

Abstract

Abstract During inflammation polymorphonuclear cells (PMNs) are exposed to agonistic stimuli including activated complement, kallikrein, arachidonic acid metabolites, monokines, and platelet-activating factor (PAF). We report that PAF not only directly activates PMNs but in miniscule quantities (10(-12) mol/L) “primes” them as well, that is, permits PMNs to respond to subsequent stimuli that would be otherwise ineffectual. PAF priming of responses including superoxide generation, elastase release, and aggregation is time dependent and is maximal within five minutes. PAF need not be present during the subsequent exhibition of PMN agonists, but priming is inhibited by cold and is also inhibited by the PAF receptor antagonists BN 52021, L-652, and kadsurenone. An intact PAF molecule is required because lyso-PAF and methoxy-PAF do not prime PMN responses. PAF priming is associated with both enhanced expression of the adhesive glycoprotein identified by OKM- 1 antibody and an enhanced rise in intracellular calcium levels in response to the subsequent addition of agonists such as FMLP. PMNs primed with PAF and stimulated with either F-Met-Leu-Phe or phorbol esters are more effective in lysing and detaching cultured human endothelial cells--damage that can also be inhibited by the PAF antagonists. Because PAF is synthesized and exhibited on surfaces of endothelial cells perturbed by coagulation, we suggest that this lipid may potentiate otherwise trivial activators of marginated PMNs so that they become damaging to the PAF-synthesizing endothelium itself. If so, our studies suggest a possible therapeutic role for PAF inhibitors in excessive inflammatory states.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 149 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3