Inhibition of human platelet reactivity by endothelium-derived relaxing factor from human umbilical vein endothelial cells in suspension: blockade of aggregation and secretion by an aspirin-insensitive mechanism

Author:

Broekman MJ1,Eiroa AM1,Marcus AJ1

Affiliation:

1. Department of Medicine, Department of Veterans Affairs Medical Center, New York, NY.

Abstract

Abstract To determine a role for endothelium-derived relaxing factor/nitric oxide (EDRF/NO) in regulation of human platelet reactivity by human endothelial cells (EC), we studied combined suspensions of human umbilical vein endothelial cells (HU-VEC, passage 2 through 3) and washed human platelets. Confluent HUVEC monolayers were treated with aspirin (1 mmol/L) to prevent prostacyclin (PGI2) formation, washed, and harvested. Aspirin-treated platelets alone (58 x 10(6)) were fully aggregated by thrombin at 0.05 U/mL or more. In the presence of 10(6) HUVEC, however, platelet serotonin release and aggregation in response to thrombin at doses as high as 0.5 U/mL were blocked. We demonstrated for the first time that inhibition of aggregation and serotonin release, due to EDRF/NO, occurred in parallel. HUVEC-dependent inhibition of platelet responsiveness was enhanced by superoxide dismutase (SOD) and reversed by hemoglobin. The inhibitory effect was also reversed by preincubation of HUVEC with NG-monomethyl-L-arginine (NMA) or NG-nitro-L-arginine (NNA) through competitive blockade of arginine metabolism. Pretreatment of platelets with methylene blue indicated that EC-dependent inhibition of platelet reactivity occurred through activation of platelet soluble guanylate cyclase. When platelets and HUVEC were separated by a permeable membrane and both cells were stimulated by thrombin, platelets remained unresponsive. This indicated that inhibition was induced by a fluid-phase mediator, independent of direct cell-cell contact. These data demonstrate that EDRF/NO formation from L-arginine by human EC plays an important role as an aspirin-insensitive fluid-phase inhibitor of human platelet reactivity.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3