Reactivity of synthetic peptide analogs of adhesive proteins in regard to the interaction of human endothelial cells with extracellular matrix

Author:

Chen CS1,Hawiger J1

Affiliation:

1. Department of Medicine, New England Deaconess Hospital, Boston, MA.

Abstract

Abstract Vascular endothelial cells, providing a nonthrombogenic surface to the lumenal aspect of blood vessels, are anchored to matrix adhesion molecules in the subendothelium through their respective receptors belonging to a superfamily of integrins. We analyzed the reactivity of synthetic peptide analogs of adhesive proteins toward human umbilical vein endothelial cells (HUVEC), assaying their detachment from extracellular matrix and attachment to extracellular matrix components in vitro. Synthetic peptide analogs Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP), Arg-Gly-Asp-Val (RGDV), Arg-Gly-Asp-Ser (RGDS), and Arg-Gly-Asp-Phe (RGDF), which are analogous to “cell adhesion site” of fibronectin, vitronectin, von Willebrand factor, and alpha-chain of human fibrinogen, respectively, caused significant detachment of HUVEC from the extracellular matrix in vitro at the concentrations ranging from 0.5 to 1.5 mmol/L. They also interfered with attachment of HUVEC to surfaces coated with subendothelial extracellular matrix or its components. The synthetic peptide analog of HHLGGAKQAGDV, which is homologous to the gamma-chain of human fibrinogen sequence 400–411, did not cause any measurable effect on the integrity of HUVEC monolayers (detachment and attachment). “Hybrid” peptides bearing salient features of both sequences, ie, Ala-Lys-Gln-Arg-Gly-Asp-Phe (AKQRGDF) and Lys- Gln-Arg-Gly-Asp-Phe (KQRGDF), had an attenuated effect on the detachment of HUVEC from extracellular matrix. Thus, the integrity of the human endothelial cell monolayer anchored to the extracellular matrix, as measured in detachment and attachment assays, is disturbed by peptides containing RGD sequence whereas the synthetic peptide His- His-Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val (HHLGGAKQAGDV) is nonreactive.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3