C4b-binding protein exacerbates the host response to Escherichia coli

Author:

Taylor F1,Chang A1,Ferrell G1,Mather T1,Catlett R1,Blick K1,Esmon CT1

Affiliation:

1. Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City.

Abstract

Abstract Activated protein C is a plasma anticoagulant. For activated protein C to function as an anticoagulant, it must form a complex with protein S. Protein S anticoagulant activity is neutralized by formation of a reversible complex with C4b binding protein (C4bBP). C4bBP is an acute- phase plasma protein. When C4bBP levels increase, mass action forces the level of free protein S to decrease, giving rise to an acquired functional protein S deficiency. It has been proposed that these elevated C4bBP levels and the resultant acquired deficiency of protein S that occurs in inflammation could contribute to a hypercoagulable state. An experimental model to test this hypothesis was suggested by our previous studies that demonstrated that inhibition of protein C activation rendered baboons hypercoagulable in response to sublethal Escherichia coli infusion (J Clin Invest 79:918, 1987). We have extended these studies to examine the effect of inhibition of protein S activity with C4bBP in the host (baboon) response to infusion of sublethal concentrations of E coli organisms. Five sets of animals were studied: (1) those challenged with sublethal concentrations of E coli alone (0.4 x 10(10)/kg); (2) those supplemented only with C4bBP (20 mg/kg); (3) those challenged with the same level of E coli but supplemented with C4bBP (20 mg/kg); (4) those challenged with sublethal E coli and supplemented with C4bBP (20 mg/kg) and sufficient protein S (2.3 mg/kg) to fill the protein S binding sites on C4bBP; and (5) those challenged with lethal concentrations of E coli. Sublethal E coli infusion (group 1 animals) caused only an acute-phase response with no consumption of fibrinogen, detectable organ damage, or detectable tumor necrosis factor (TNF) in the plasma. C4bBP infusion (group 2 animals) resulted in no significant physiologic changes, no detectable plasma TNF, and little change in fibrinogen level. The group 3 animals, receiving both sublethal E coli and C4bBP, exhibited rapid consumption of fibrinogen, systemic organ damage, and detectable circulating TNF ultimately leading to death. The overall response of this group was very similar to the response of the group 5 animals receiving an LD100 dose of E coli. The group 4 animals, which were treated exactly as above except that C4bBP was supplemented with a slight excess of protein S, responded essentially like those that received sublethal E coli alone. These studies suggest that the elevation of C4bBP during an inflammatory response can contribute to fibrinogen consumption and vascular damage. This vascular damage may be associated with enhanced elaboration of cytokines like TNF.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3