Enhancement of murine blast cell colony formation in culture by recombinant rat stem cell factor, ligand for c-kit

Author:

Tsuji K1,Zsebo KM1,Ogawa M1

Affiliation:

1. Department of Medicine, Medical University of South Carolina.

Abstract

Abstract Mice with W mutations characterized by hypopigmentation, sterility, anemia, and mast cell deficiency have abnormalities in c-kit, a receptor with tyrosine kinase activity. Recently, the ligand for c-kit was cloned by investigators in several laboratories. Zsebo et al identified and cloned a gene for a cytokine termed stem cell factor (SCF) in the medium conditioned by buffalo rat liver cells, and this cytokine proved to be c-kit ligand. We have examined the effects of recombinant rat SCF (rrSCF) on colony formation from primitive hematopoietic progenitors in culture. rrSCF and erythropoietin (Ep) supported formation of granulocyte/macrophage (GM) colonies as well as a small number of multilineage and blast cell colonies from marrow cells of normal mice. We then examined the effects of rrSCF using marrow and spleen cells of mice that had been treated with 150 mg/kg 5- fluorouracil (5-FU). Unlike single factors, combinations of factors such as rrSCF plus interleukin-3 (IL-3), rrSCF plus IL-6, and rrSCF plus granulocyte colony-stimulating factor (G-CSF) markedly stimulated the growth of multilineage colonies. In contrast to these factor combinations and a combination of IL-3 and IL-6, a combination of rrSCF and IL-4 did not support multilineage colony formation. Mapping studies of the development of multipotential blast cell colonies further indicated that rrSCF, like IL-6, G-CSF, and IL-11, shortens the dormant period in which the stem cells reside. When we tested the effects of rrSCF using pooled blast cells, which are highly enriched for progenitors and are devoid of stromal cells, rrSCF plus Ep supported formation of only a few multilineage colonies, indicating that rrSCF itself is ineffective in support of the proliferation of multipotential progenitors. However, rrSCF supported formation of a significant number of neutrophil and neutrophil/macrophage colonies from pooled blast cells, indicating that rrSCF is able to support directly the proliferation of progenitors in neutrophil/monocyte lineages. c-kit ligand may play important roles in adult hematopoiesis.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hematopoietic stem cells are pluripotent and not just “hematopoietic”;Blood Cells, Molecules, and Diseases;2013-06

2. Developmental Biology of the Hematopoietic Growth Factors;Fetal and Neonatal Physiology;2011

3. FLT-3 ligand mobilizes hematopoietic primitive and committed progenitor cells into blood in mice;European Journal of Haematology;2009-04-24

4. Recent advances in understanding extrinsic control of hematopoietic stem cell fate;Current Opinion in Hematology;2006-07

5. The stem cell;Textbook of Malignant Haematology, Second Edition;2004-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3