Expression of human recombination activating genes (RAG1 and RAG2) in neoplastic lymphoid cells: correlation with cell differentiation and antigen receptor expression

Author:

Bories JC1,Cayuela JM1,Loiseau P1,Sigaux F1

Affiliation:

1. Molecular Hematology Laboratory, Hopital Saint Louis, Paris, France.

Abstract

Abstract Regulation of V-(D)-J recombinations that occur in antigen receptor encoding genes remains poorly understood. Recently, two genes, RAG1 and RAG2, that are able to activate rearrangement of synthetic recombination substrates were cloned in mouse and a human gene homologous to RAG1 was described. To define the differentiation stages corresponding to RAG1 and RAG2 RNA expression, we have studied a large number of B- and T-lymphoid neoplasias. First, we show that a human gene homologous to the murine RAG2 is transcribed in humans. Moreover, using a polymerase chain reaction approach, we have shown that RAG are expressed not only in T-cell receptor (TCR)-negative T-cell acute lymphoblastic leukemias (T-ALLs), but also in some cases in which a significant percentage of cells expressed surface TCR. Absence of RAG expression was shown in certain T-ALLs at variable stages of thymic differentiation. Data obtained in B-lineage ALLs show that RAG RNAs are expressed in almost all slg- B-lineage ALLs but are not transcribed in the slg+ B-cell proliferations tested, including Burkitt's ALLs, follicular center cell lymphomas, and chronic leukemias. These findings are consistent with the involvement of RAG in the control of in vivo V- (D)-J recombinations. These findings are also of interest in the delineation of potential regulatory factors acting on RAG transcription and in the understanding of the mechanisms of specific chromosomal abnormalities occurring in immature lymphoid cells.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3