Human neutrophils contain a protein kinase C-like enzyme that utilizes guanosine triphosphate as a phosphate donor. Cofactor requirements, kinetics, and endogenous acceptor proteins

Author:

Stoehr SJ1,Smolen JE1

Affiliation:

1. Department of Pediatric Hematology/Oncology, University of Michigan, Ann Arbor 48109.

Abstract

Abstract Investigations of protein kinase C (PKC) activity have focussed on protein phosphorylation using adenosine triphosphate (ATP), not guanosine triphosphate (GTP), as the phosphate donor. In a continuing study of the enzymology of the PKC of human neutrophils, we wanted to determine if there might be protein kinases that do use GTP as a phosphate donor. Soluble extracts or detergent-extracted fractions of human neutrophils were used as enzyme sources. Phosphorylation of histone using [gamma-32P]-GTP was 31% as effective as [gamma-32P]-ATP. Phosphorylation with GTP depended on Ca2+, Mg2+, and phospholipid, just as the ATP, and the Ca2+ requirements were similar. In all cases, H-7, an inhibitor of ATP-supported PKC activity, blocked GTP-utilizing activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that similar endogenous proteins were phosphorylated with ATP or GTP. The apparent Km and Vmax for the enzyme(s) for both phosphate donors were identical, although these were modified by treatment with Triton X-100. GTP competitively inhibited use of ATP by PKC; however, low concentrations of ATP enhanced GTP- utilizing kinase activity in some cases. Non-hydrolyzable forms of ATP and other nucleotide triphosphates were inhibitory. Detergent treatment also markedly altered the number of proteins phosphorylated by either nucleotide. The major protein phosphorylated in the soluble or detergent extract was a single polypeptide band in the 34 Kd range. These studies are the first to explicitly examine the possible phosphorylation by neutrophil PKC using GTP and point to a potential alternative mode of enzyme activity. Since high concentrations of GTP are available within neutrophils, the ability of PKC or a PKC-like enzyme to use this nucleotide may have important ramifications in signal transduction.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3