Regulation of interleukin-6 expression in cultured human blood monocytes and monocyte-derived macrophages

Author:

Bauer J1,Ganter U1,Geiger T1,Jacobshagen U1,Hirano T1,Matsuda T1,Kishimoto T1,Andus T1,Acs G1,Gerok W1

Affiliation:

1. Medizinische Klinik, Universitat Freiburg, FRG.

Abstract

Abstract A culture system that allows human blood monocytes to differentiate into macrophages in vitro was used to study B-cell stimulatory factor- 2/interleukin-6 (interferon-beta 2/26 kd protein) expression in mononuclear phagocytes. Using B-cell stimulatory factor-2 (BSF-2) cDNA and a polyclonal, monospecific antibody directed against human BSF-2, we find that strong interleukin-6 (IL-6) expression is initiated in cultured monocytes on stimulation with endotoxin. Maximally induced monocytic BSF-2/IL-6 synthesis (1% to 2% of total proteins secreted by monocytes) is more than ten times stronger than in terminally differentiated macrophages (approximately 0.1% of total secretory proteins). BSF-2/IL-6 mRNA was detectable as early as one hour after stimulation with endotoxin, reaching maximum levels three hours after stimulus. Interleukin-1 (IL-1) was able to stimulate IL-6 synthesis in monocytes, but not in macrophages. Tumor necrosis factor, interferon- gamma and interleukin-2 (IL-2) had no effect on IL-6 synthesis in monocytes or macrophages. We found five molecular weight forms of BSF- 2/IL-6 to be secreted by monocytes of 21.5 kd, 23.5 kd, 24 kd, 26 kd, and 28 kd apparent molecular weight. The 26 kd and 28 kd forms were found to represent N-glycosylated molecules, which were not detectable on treatment of the cells with the N-glycosylation inhibitor tunicamycin. The 21.5 kd, 23.5 kd, and 24 kd BSF-2/IL-6 forms were unaffected by tunicamycin treatment. We conclude from our data that cells of the mononuclear phagocyte lineage are one of the main sites of BSF-2/IL-6 (interferon-beta 2/26 kd protein/HSF) synthesis.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3