Interaction of fibronectin with cultured human endothelial cells: characterization of the specific receptor

Author:

Conforti G1,Zanetti A1,Colella S1,Abbadini M1,Marchisio PC1,Pytela R1,Giancotti F1,Tarone G1,Languino LR1,Dejana E1

Affiliation:

1. Istituto di Ricerche Farmacologiche “Mario Negri,” Milano, Italy.

Abstract

Abstract In this study we provide a characterization of the fibronectin (FN) binding to endothelial cells (EC), and we identify the FN binding site on these cells. 125I-FN binding to EC in suspension was time dependent and reached a plateau at 4 h. Cold FN inhibited this interaction in a concentration-dependent way, but vitronectin, fibrinogen, and IgG were poorly effective. About 80% of the total FN associated to EC at the equilibrium was specifically bound; of this, 60% was reversibly bound, while 20% appeared to be internalized. The FN binding was saturable and an apparent dissociation constant of about 0.23 x 10(-6) mol/L and a maximal number of binding sites of about 9.8 x 10(5) was estimated from binding isotherms. Autoradiography data showed that EC-associated 125I- FN was all in high mol wt form that did not enter the gel. We then characterize the FN receptor (FNR) in EC. An antiserum to the FNR isolated from human placenta inhibited FN binding to EC by 89%, and using the immunoblotting technique, it recognized two bands in the EC detergent extract of mol wt 125/160 Kd. This antiserum also recognized the EC membrane protein complex eluted from the FN affinity column by an arg-gly-asp (RGD) peptide. When this complex was included into liposomes, it poorly bound to FN. However, the binding was strikingly increased by addition of Mn in the buffer and was specific for FN in respect to other substrata. These data define the FN binding site in EC and indicate that it is functionally and structurally related to that isolated from human placenta.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3