Effect of inflammatory cytokines on hypoxia-induced erythropoietin production

Author:

Faquin WC1,Schneider TJ1,Goldberg MA1

Affiliation:

1. Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115.

Abstract

Abstract The effects of the inflammatory cytokines interleukin-1 alpha (IL-1 alpha), IL-1 beta, IL-6, transforming growth factor-beta (TGF-beta), and tumor necrosis factor-alpha (TNF-alpha) on erythropoietin (Epo) production in Hep3B cells were examined. The addition of IL-1 alpha, IL- 1 beta, or TNF-alpha resulted in a dose-dependent inhibition of hypoxia- induced Epo production by as much as 89%. IL-1 beta was the most effective cytokine tested, demonstrating half-maximal inhibition at 0.4 U/mL compared with 1.0 and 10.0 U/mL for IL-1 alpha and TNF-alpha, respectively. TGF-beta also inhibited hypoxia-induced Epo production, but only by as much as 56%. In contrast to IL-1 alpha, IL-1 beta, TNF- alpha, and TGF-beta, the addition of IL-6 to hypoxic Hep3B cells resulted in a dose-dependent stimulation of hypoxia-induced Epo production by as much as 81%. However, IL-6 did not stimulate Epo synthesis in the absence of hypoxia, and was thus synergistic with hypoxia in inducing Epo production. Combinations of IL-1 alpha, TNF- alpha, and IL-6 were found to be additive in their effects on hypoxia- induced Epo production. By Northern blot analysis, Epo messenger RNA levels in Hep3B cells grown in 1% O2 were decreased when concurrently exposed to either IL-1 alpha or TNF-alpha. The effects that IL-1 alpha, IL-1 beta, TGF-beta, TNF-alpha, and IL-6 have on hypoxia-induced Epo production may provide new insights into the signal transduction pathway by which hypoxia leads to changes in gene expression. In addition, the effects of these inflammatory cytokines on hypoxia- induced Epo production in vitro suggest that in various inflammatory disorders these cytokines may affect Epo production in vivo and may play a significant role in the pathogenesis of the anemia of chronic disease.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3