In vitro interaction of recombinant tumor necrosis factor alpha and all- trans-retinoic acid with normal and leukemic hematopoietic cells

Author:

Tobler A1,Munker R1,Heitjan D1,Koeffler HP1

Affiliation:

1. Department of Medicine, UCLA Medical Center 90024.

Abstract

Abstract Both human recombinant tumor necrosis factor alpha (TNF alpha) and all- trans-retinoic acid (RA) inhibit the in vitro clonal growth of human myeloid leukemic cells. We investigated the in vitro interaction of TNF alpha and RA with normal and a variety of leukemic myeloid cells. With the promyelocytic HL-60 cells, TNF alpha (greater than or equal to 2.5 U/mL) in combination with RA synergistically inhibited clonal growth; TNF alpha at lower concentrations (less than or equal to 1 U/mL) plus RA (10(-9) mol/L) were antagonistic in their inhibition of growth. The ability of RA (10(-8) mol/L) plus TNF alpha (2.5, 5 U/mL) to enhance differentiation of HL-60 cells paralleled their ability to inhibit clonal growth of these cells. In addition, RA (10(-9) to 10(-7) mol/L) increased the number of TNF alpha receptors on HL-60 cells 1.3- to 1.7- fold without changing the affinity for the TNF alpha receptor. With the more immature KG-1 myeloblasts, concentrations of TNF alpha greater than 10 U/mL synergistically interacted with RA to inhibit clonal growth; at lower concentrations of TNF alpha (less than 10 U/mL), RA appeared to inhibit the expected effect of TNF alpha. KG-1 cells were not induced to differentiate with either agent alone or in combination. With four of nine leukemic patients, TNF alpha in combination with RA (10(-7) mol/L) inhibited leukemic clonal growth to a greater extent than each agent alone. No marked effect of the combined treatment was seen in two other patients. The RA reversed the inhibitory action of TNF alpha on normal human granulocyte-macrophage colony forming cells (GM-CFC) and on clonal growth of leukemic cells from three patients. Our study suggests that TNF alpha and RA interact in a complex manner with normal and leukemic hematopoietic cells.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3