Endogenous and exogenous adenosine inhibit granulocyte aggregation without altering the associated rise in intracellular calcium concentration

Author:

Skubitz KM1,Wickham NW1,Hammerschmidt DE1

Affiliation:

1. Department of Medicine, University of Minnesota Medical School, Minneapolis.

Abstract

Abstract The effects of adenosine, adenosine deaminase (ADA), and an irreversible ADA inhibitor 2′-deoxycoformycin (DCF) on granulocyte aggregation in response to four different stimuli: the synthetic chemotaxin N-formyl-met-leu-phe (FMLP), zymosan-activated plasma (ZAP), the calcium ionophore A23187, and phorbol myristate acetate (PMA) were studied. Adenosine inhibited granulocyte aggregation in response to 10(- 7) mol/L FMLP in a dose-dependent fashion; inhibition in the presence of 1 mumol/L adenosine was 25% +/- 3% (SD) and was 50% (the maximal inhibition observed) with 1 mmol/L adenosine. Quantitatively similar results were obtained when ZAP or A23187 was used as the aggregant but the response to PMA was not affected. ADA not only reversed the inhibition due to adenosine but actually augmented the aggregation to FMLP by 118% +/- 9%. Similar results were obtained with ZAP and A23187 but not with PMA. These effects of ADA depended on its enzymatic activity as they could be blocked by preincubation with DCF. Fluorescent measurement of intracellular calcium in fura-2 loaded granulocyte suspensions established that neither adenosine nor ADA affected subsequent FMLP-stimulated calcium responses. Adenosine, therefore, may inhibit granulocyte responsiveness by blocking signal transduction at a point after calcium entry/mobilization but before activation of protein kinase C. Furthermore, the augmentation of responses seen with ADA suggests that endogenous adenosine may be a physiologic autocrine regulator of granulocyte function.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3