A 13-mer peptide straddling the leucine33/proline33 polymorphism in glycoprotein IIIa does not define the PLA1 epitope

Author:

Flug F1,Espinola R1,Liu LX1,SinQuee C1,DaRosso R1,Nardi M1,Karpatkin S1

Affiliation:

1. Department of Pediatrics, New York University Medical School, NY 10016.

Abstract

Abstract We confirm the recent report (J Clin Invest 83:1778, 1989) of a polymorphism at amino acid 33 of platelet GPIIIa associated with the PLA1/PLA2 phenotype by using the polymerase chain reaction on cDNA derived from platelet RNA, using the base-pair primers 105–129 and 452- 428. Platelet cDNA from three PLA2-homozygous individuals, when digested with Nci I, gave two bands of 256 bp and 91 bp, whereas eight PLA1 cDNAs gave a single band of 347 bp. Two 13-mer amino acid peptides straddling the amino acid polymorphism: SDEALP (L/P) GSPRCD were synthesized for epitope studies. Two mouse polyclonal antibodies were raised: one against the PLA1-associated peptide, the other against the PLA2 peptide. Both antibodies react with either peptide, as well as with both PLA1 and PLA2 platelets. The PLA1 peptide did not block the binding of two different human anti-PLA1 antibodies to the 100-Kd GPIIIa band on immunoblot of platelet extracts; neither did it block the binding of the same antibodies to PLA1-platelet extracts in an enzyme-linked immunosorbent assay. Further studies were performed on the PLA1 epitope following subtilisin digestion of purified GPIIIa. A 55-Kd fragment was obtained that retained the PLA1 epitope as well as the first 13 N-terminal amino acids of GPIIIa. Reduction of the 55-Kd fragment resulted in loss of the PLA1 epitope with production of a 67- Kd, 21-Kd, and 10-Kd band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The 55-Kd band does not react with LK-2, a monoclonal antibody versus GPIIIa that inhibits adenosine diphosphate, collagen, epinephrine, and thrombin-induced aggregation. Thus, the PLA1 epitope is conformation-induced, resides on an N-terminal 55-Kd fragment composed of two or more peptides held together by -SH bonds, and is not required for platelet aggregation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3