Differential regulation of primitive human hematopoietic cells in long- term cultures maintained on genetically engineered murine stromal cells

Author:

Sutherland HJ1,Eaves CJ1,Lansdorp PM1,Thacker JD1,Hogge DE1

Affiliation:

1. Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada.

Abstract

Abstract Various growth factors are known to stimulate both early and late stages of human hematopoietic cell development in semisolid assay systems, but their role as microenvironmental regulators is poorly understood. To address this problem, we developed a novel coculture system in which highly purified primitive human hematopoietic cells were seeded onto an irradiated feeder layer of cells from a murine marrow-derived stromal cell line (M2–10B4) previously engineered by retroviral-mediated gene transfer to produce specific human factors. Effects on cells at very early, intermediate, and late stages of hematopoiesis were then evaluated by assessing the number of clonogenic cell precursors (long-term culture initiating cells [LTC-IC]), clonogenic cells, and mature granulocyte and macrophage progeny present in the cultures after 5 weeks. In the absence of any feeders, cells at all stages of hematopoiesis decreased to very low levels. In contrast, maintenance of LTC-IC was found to be supported by control murine stromal cells as effectively as by standard human marrow adherent layers. The presence of granulocyte colony-stimulating factor (G-CSF) and interleukin-3-producing M2–10B4 cells in combination was able to further enhance the maintenance and early differentiation of these cells without a decline in their proliferative potential as measured by the clonogenic output per LTC-IC. However, this effect was lost if granulocyte-macrophage CSF (GM-CSF)-producing feeders were also present. On the other hand, in the presence of GM-CSF-producing feeders, the output of mature granulocytes and macrophages increased 20- fold. These findings show that it is possible to selectively improve the maintenance of very primitive human hematopoietic cells in vitro or their output of mature progeny by appropriate manipulation of the long- term marrow culture system. Further exploitation of this approach should facilitate investigation of the mechanisms operative within the human marrow microenvironment in vivo and the design of protocols for in vitro manipulation of human marrow for future therapeutic applications.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3