In vitro differentiation of human granulocyte/macrophage and erythroid progenitors: comparative analysis of the influence of recombinant human erythropoietin, G-CSF, GM-CSF, and IL-3 in serum-supplemented and serum- deprived cultures

Author:

Migliaccio G1,Migliaccio AR1,Adamson JW1

Affiliation:

1. Department of Medicine, University of Washington, Seattle 98195.

Abstract

Abstract The effects of recombinant human erythropoietin (Ep), granulocyte/macrophage (GM) and granulocyte (G) colony-stimulating factors (CSF), and interleukin-3 (IL-3) on erythroid burst and GM colony growth have been studied in fetal bovine serum (FBS)- supplemented and FBS-deprived culture. Sources of progenitor cells were nonadherent or nonadherent T-lymphocyte-depleted marrow or peripheral blood cells from normal humans. G-CSF, in concentrations up to 2.3 X 10(-10) mol/L, induced only the formation of neutrophil colonies. In contrast, GM-CSF and IL-3 both induced GM colonies and sustained the formation of erythroid bursts in the presence of Ep. However, the activities of these growth factors were affected by the culture conditions. IL-3 induction of GM colonies depended on the presence of FBS, whereas the degree of GM-CSF induction of GM colonies in FBS- deprived cultures depended on the method by which adherent cells were removed. GM-CSF increased colony numbers in a concentration-dependent manner only if the cells had been prepared by overnight adherence. Both GM-CSF and IL-3 exhibited erythroid burst-promoting activity in FBS- deprived cultures. However, some lineage restriction was evident because GM-CSF was two- to threefold more active than IL-3 in inducing GM colonies but IL-3 was two- to threefold more active in promoting erythroid burst growth. Furthermore, in FBS-deprived cultures, the number of both erythroid bursts and GM colonies reached the maximum only when Ep, GM-CSF, and IL-3 or GM-CSF, IL-3, and G-CSF, respectively, were added together. These results suggest that the colonies induced by IL-3, GM-CSF, and G-CSF are derived from different progenitors.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3