Regulation of neutrophil migration and superoxide production by recombinant tumor necrosis factors-alpha and -beta: comparison to recombinant interferon-gamma and interleukin-1 alpha

Author:

Figari IS1,Mori NA1,Palladino MA Jr1

Affiliation:

1. Department of Molecular Immunology, Genentech, Inc, South San Francisco, CA 94080.

Abstract

Abstract We compared the ability of recombinant human tumor necrosis factor- alpha (rHuTNF-alpha) and tumor necrosis factor-beta (rHuTNF-beta) to stimulate polymorphonuclear neutrophil (PMN) migration and superoxide production. Significant PMN migration occurred across polycarbonate filters after stimulation with rHuTNF-alpha at concentrations ranging from 10(-7) to 10(-10) mol/L and at 10(-7) to 10(-8) mol/L for rHuTNF- beta and N-formylmethionyl-leucyl phenylalanine (FMLP), whereas recombinant human interferon-gamma was only minimally active at 10(-7) mol/L and recombinant human interleukin-1 alpha was inactive at the doses tested. In addition, antibodies to rHuTNF-alpha completely inhibited rHuTNF-alpha but not rHuTNF-beta or FMLP-induced PMN migration. Combinations of rHuTNF-alpha and rHuTNF-beta (at similar molar concentrations) stimulated PMN migration levels comparable to that obtained with rHuTNF-alpha alone. Checkerboard analyses performed by placing different concentrations of rHuTNF-alpha and rHuTNF-beta above and below polycarbonate filters of microchemotaxis chambers demonstrated that rHuTNF-alpha and rHuTNF-beta stimulated both chemotactic and chemokinetic responses by PMN. Additional studies demonstrated that 1 X 10(-8) mol/L rHuTNF-alpha and 3 X 10(-9) mol/L rHuTNF-beta (which represents 10(4) U/mL of each cytokine) were similar in their ability to induce superoxide production by PMNs; however, at ten- to 100-fold lower molar concentrations (10(3) and 10(2) units), rHuTNF-alpha was significantly more active than rHuTNF-beta. At the doses tested, both cytokines were less active than phorbol myristate acetate at stimulating O2- release. The results demonstrate that rHuTNF- alpha and rHuTNF-beta differ quantitatively but not qualitatively in their effects on PMN functions in vitro and suggest that rHuTNF-beta may be less toxic than rHuTNF-alpha in vivo.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3