Expression of human adenosine deaminase from various strong promoters after gene transfer into human hematopoietic cell lines

Author:

Hock RA1,Miller AD1,Osborne WR1

Affiliation:

1. Program in Molecular Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA 98104.

Abstract

Abstract Adenosine deaminase (ADA) deficiency is associated with a fatal severe combined immunodeficiency. Because most patients do not have a suitable marrow donor, the introduction of a normal ADA gene into the patient's marrow cells is a potentially useful alternative therapy. To identify vectors that provide optimal gene expression in human hematopoietic cells, we investigated retroviral vectors containing the ADA gene under the transcriptional control of the promoter/enhancers of Moloney murine leukemia virus, the simian virus 40 early region, the cytomegalovirus immediate-early gene, the lymphotropic papovavirus, and the human beta- globin gene. ADA expression from these vectors was monitored in the ADA- human histiocytic lymphoma cell line DHL-9, and in the multipotential chronic myeloid leukemia cell line K562. ADA expression in infected K562 cells was also measured after induction of megakaryoblastic differentiation by phorbol ester, and after induction of erythroid differentiation by sodium n-butyrate or hemin. In these hematopoietic cell lines, the vectors that contained ADA controlled by either the Moloney murine leukemia virus promoter (LASN) or the cytomegalovirus promoter (LNCA) expressed ADA at much higher levels than the other vectors tested. Furthermore, in K562 cells infected with LASN and LNCA vectors, induction of terminal differentiation resulted in the same or higher level expression of ADA. These cell lines have permitted the evaluation of transduced gene expression in proliferating and differentiating hematopoietic cells that provide a model for bone marrow-targeted gene therapy.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3