Developmental switch in the relative expression of the alpha 1- and alpha 2-globin genes in humans and in transgenic mice

Author:

Albitar M1,Cash FE1,Peschle C1,Liebhaber SA1

Affiliation:

1. Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia.

Abstract

Abstract Human alpha-globin is encoded by two adjacent genes, alpha 2 and alpha 1. Despite their remarkable level of structural identity, the more 5′ (alpha 2) gene is the major alpha-globin locus in the normal adult, expressed at 2.6-fold higher levels than the adjacent and more 3′ (alpha 1) globin gene. In light of the well-characterized pattern of gene activation in the human alpha- and beta-globin gene clusters during development, we considered the possibility that the relative expression of these two alpha-globin loci might be developmentally controlled. Analysis of human embryonic and early fetal erythroid RNA samples confirmed this possibility; levels of mRNA encoded by the two alpha-globin loci are equal in the embryo and subsequently shift to dominant expression of the alpha 2-globin locus at week 8 in utero. In transgenic mice carrying the entire human alpha-globin cluster (except for the theta gene) we show the same shift from equal expression of the alpha 1- and alpha 2-globin loci at the embryonic stage to predominance of the alpha 2-globin locus in the adult. These data demonstrate a switch in the expression of the two adjacent alpha-globin genes during the embryonic-to-fetal switch in erythroid development and provide an experimental system for its further characterization.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polyploid giant cancer cells and cancer progression;Frontiers in Cell and Developmental Biology;2022-10-05

2. The role of globins in cardiovascular physiology;Physiological Reviews;2022-04-01

3. A Small Key for a Heavy Door: Genetic Therapies for the Treatment of Hemoglobinopathies;Frontiers in Genome Editing;2021-02-04

4. Generation of erythroid cells from polyploid giant cancer cells: re-thinking about tumor blood supply;Journal of Cancer Research and Clinical Oncology;2018-02-07

5. Scanning for α-Hemoglobin Variants by High-Resolution Melting Analysis;Journal of Clinical Laboratory Analysis;2016-02-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3