Structure and expression of the cDNA encoding human neutrophil collagenase

Author:

Devarajan P1,Mookhtiar K1,Van Wart H1,Berliner N1

Affiliation:

1. Department of Internal Medicine, Yale Medical School, New Haven, CT 06510.

Abstract

Abstract We have isolated and characterized a 2.4-kb cDNA clone encoding human neutrophil collagenase (HNC), a member of the family of matrix metalloproteinases restricted to secondary granules within neutrophils. Partial amino acid sequence was used to deduce oligonucleotide probes. These probes were used to screen a human granulocyte cDNA library derived from messenger RNA (mRNA) from a patient with chronic granulocytic leukemia. Cell-free translation of RNA produced from the cDNA produced a 52-Kd protein that was recognized by anti-HNC antibody. The cDNA clone was sequenced and shown to encode a 467-residue protein whose sequence matched those regions currently known for HNC. The enzyme exhibits 58% homology to human fibroblast collagenase and has the same domain structure. It consists of a 20-residue signal peptide, and an 80-residue propeptide that is lost on autolytic activation by cleavage of an M-L bond. Other regions identified include the autolytic degradation site, the “cysteine switch” residue that is involved in latency and activation, and a putative zinc binding sequence. HNC has six potential N-linked glycosylation sites. The cDNA hybridized to a 3.4-kb mRNA in RNA from a patient with chronic granulocytic leukemia, but not to RNA from uninduced HL60 cells or HL60 cells that had been induced to undergo granulocytic or monocytic maturation with dimethyl sulfoxide or 12-O-tetradecanoylphorbol 13-acetate, respectively. These results parallel those seen with lactoferrin and transcobalamin I, two other secondary granule proteins.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3