Multidrug resistance (mdr1) gene expression in adult acute leukemias: correlations with treatment outcome and in vitro drug sensitivity

Author:

Marie JP1,Zittoun R1,Sikic BI1

Affiliation:

1. Department of Medicine, Stanford University School of Medicine, CA.

Abstract

Abstract Resistance to multiple chemotherapeutic agents has been related to the production of P-glycoprotein, a trans-membrane drug efflux pump that is encoded by the multidrug resistance (MDR) gene mdr1. To investigate whether mdr1 could be involved in clinical resistance to chemotherapy in acute leukemias, we have analyzed retrospectively the RNA from adult acute leukemia cells by slot-blot hybridization with a human mdr1 probe. Units of mdr1 expression were defined by reference to drug- sensitive human sarcoma and K562 leukemia cell lines (1 U) and the highly resistant doxorubicin selected leukemia cells K562/R7 (50 U). We studied 41 adult patients with acute leukemias: 5 acute lymphoblastic leukemias, 23 acute myeloid leukemias, and 13 secondary leukemias or blast crisis of chronic myelogenous leukemia. Expression of 10 U or more of mdr1 was found in 6 of 31 (19%) leukemias at diagnosis, versus 5 of 10 (50%) after relapse from therapy, P = .06. The complete remission rate and in vitro sensitivity to daunorubicin were both correlated with low expression (1 U, v 2 U or more) of mdr1. Among 36 evaluable attempts to induce remission, the complete remission rate was 67% (8 of 12) for patients with undetectable or minimal mdr1 expression (1 U), versus 29% (7 of 24) in patients with 2 U or more of expression, P = .03. In vitro resistance to daunorubicin or other MDR-related drugs was associated with expression of 2 U or more of mdr1 in 11 of 11 cases, while specimens that were sensitive to these agents were negative for mdr1 expression in 5 of 11 cases, P = .03. These data suggest that mdr1 expression contributes to chemoresistance in acute leukemia. Determination of mdr1 gene expression may be useful in designing therapy for patients with leukemia.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3