Polymorphism of human platelet membrane glycoprotein IIb associated with the Baka/Bakb alloantigen system

Author:

Lyman S1,Aster RH1,Visentin GP1,Newman PJ1

Affiliation:

1. Blood Center of Southeastern Wisconsin, Milwaukee 53233.

Abstract

Abstract The human Baka/Bakb alloantigen system has been implicated in the pathogenesis of post-transfusion purpura and neonatal alloimmune thrombocytopenic purpura. Human alloantisera specific for either the Baka or Bakb allele have been shown to react exclusively with the heavy chain of membrane glycoprotein (GP) IIb. To investigate the structure of the Bak epitopes, we used the polymerase chain reaction (PCR) to amplify GPIIb cDNA synthesized from platelet RNA samples prepared from individuals of known serologic phenotype. Subsequent DNA sequence analysis of amplified GPIIb cDNAs derived from one Baka homozygous individual and one Bakb homozygous individual revealed a single nucleotide base difference near the 3′ end of the mRNA encoding the GPIIb heavy chain. Short 13 base allele-specific oligonucleotides (ASO) containing the putative phenotype-specific base in the middle were then synthesized, end-labeled with digoxigenin-11-dUTP using terminal transferase, and used as probes in subsequent dot-blot hybridization experiments. Platelet RNA was prepared from a panel made up of four Baka/a, three Bakb/b, and two Baka/b individuals, and the mRNA encoding GPIIb was amplified using PCR and spotted onto nylon membranes. ASO hybridization showed that the nucleotide base difference identified above segregated with Bak phenotype in all nine individuals examined (P = .002). The base pair substitution results in an amino acid polymorphism at residue 843 of the mature heavy chain. The Baka form of GPIIb encodes an isoleucine at this position, whereas the Bakb allele contains a serine. Identification of the polymorphism associated with this clinically important alloantigen system should permit new therapeutic and diagnostic approaches for treating and managing patients with alloimmune thrombocytopenic disorders.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3