Effect of hemoglobin oxidation products on the stability of red cell membrane skeletons and the associations of skeletal proteins: correlation with a release of hemin

Author:

Jarolim P1,Lahav M1,Liu SC1,Palek J1

Affiliation:

1. Department of Biomedical Research, St. Elizabeth's Hospital, Boston, MA 02135.

Abstract

Abstract Oxidative injury to hemoglobin (Hb) leads to formation of methemoglobin (MetHb), reversible hemichromes (rHCRs), and irreversible hemichromes (iHCRs). iHCRs precipitate and form Heinz bodies that attach to the red cell membrane causing injury that leads to hemolysis. The molecular mechanisms of this membrane damage have not been fully elucidated. We have studied the effect of Hb oxidation products on the mechanical stability of red cell membrane skeletons and the associations of membrane skeletal proteins. Hb and MetHb stabilized the isolated membrane skeletons, whereas further oxidation to rHCRs abolished this stabilizing effect. Crude iHCRs prepared by phenylhydrazine oxidation of Hb destabilized membrane skeletons by decreasing formation of the spectrin-protein 4.1-actin complex, the effect similar to that of pure hemin. Whereas virtually no hemin was released from Hb and MetHb, high concentrations of hemin were released from crude iHCR preparations. After removal of this hemin fraction by Dowex resin, the iHCRs lost their destabilizing effect. We conclude that as the oxidation of Hb proceeds, the stabilizing effect of Hb on the membrane skeleton is gradually lost and the deleterious effect increases. The destabilization of the red cell membrane skeleton in the presence of crude iHCR is caused by release of hemin, which lowers the stability of membrane skeleton by weakening the spectrin-protein 4.1-actin interaction.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3