Cytochalasin D and E: effects on fibrinogen receptor movement and cytoskeletal reorganization in fully spread, surface-activated platelets: a correlative light and electron microscopic investigation

Author:

Olorundare OE1,Simmons SR1,Albrecht RM1

Affiliation:

1. Department of Pharmacology and Therapeutics, University of Ilorin, Nigeria.

Abstract

Abstract This study investigates the involvement of actin microfilaments in fibrinogen receptor redistribution and cytoskeletal reorganization that takes place in fully spread, surface-activated platelets. Colloidal gold-labeled fibrinogen (Fgn-Au label) in conjunction with video- enhanced differential interference contrast light microscopy (VDIC) was used to identify fibrinogen binding sites, glycoprotein IIb/IIIb (GPIIb/IIIa), on fully spread platelets. Platelets were treated with cytochalasins D and E (5 x 10(-5) mol/L to 5 x 10(-8) mol/L) for 10 minutes, before or after incubation with Fgn-Au label. Results observed with VDIC were subsequently confirmed by high-voltage transmission and low voltage-high resolution scanning electron microscopic examination of the specimens. Preincubation of activated platelets with cytochalasin D or E (5 x 10(-5) and 5 x 10(-6) mol/L) inhibited fibrinogen receptor redistribution and abolished cytoskeletal reorganization in fully spread platelets. After surface-activated platelets were incubated with Fgn-Au label, treatment with the above concentrations of cytochalasin D or E disrupted cytoskeletal reorganization and caused random movement of previously redistributed receptor-ligand complexes. Incubation of platelets with cytochalasin E 5 x 10(-6) mol/L prevented platelet activation and spreading. Thus, actin filaments appear necessary for platelet spreading from the discoid to the fully spread stage. The ligand-triggered, cytoskeletally directed movement of fibrinogen receptors in fully spread platelets appears to be dependent on the presence of intact, polymerized actin. This movement is distinct from the cytochalasin-insensitive accumulation of GPIIb/IIIa-ligand in the channels of the open canalicular system.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3