Cytokine regulation of colony-stimulating factor production in cultured human synovial fibroblasts: I. Induction of GM-CSF and G-CSF production by interleukin-1 and tumor necrosis factor

Author:

Leizer T1,Cebon J1,Layton JE1,Hamilton JA1

Affiliation:

1. Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia.

Abstract

Abstract The cytokines, interleukin-1 (IL-1) and tumor necrosis factor (TNF), induce a dose-dependent production of both granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte CSF (G-CSF) in cultured human synovial cells, as measured by immunoassay. With IL-1, significant levels of both CSFs were first detected within 6 to 12 hours, with a maximum reached 24 to 48 hours after commencement of stimulation. A synergistic effect was detected between IL-1 and TNF in production of both CSFs in these cells. No evidence was obtained for the IL-1-induced effect to be mediated by induction of endogenous TNF nor for the TNF-induced stimulation to involve IL-1. IL-1-stimulated synovial cells were shown to secrete biologically active GM-CSF and G- CSF, which were specifically inhibited by their respective monoclonal antibodies. The transcription inhibitor, actinomycin D, and protein synthesis inhibitor, cycloheximide, inhibited the increase in GM-CSF and G-CSF production induced by IL-1 and TNF. Finally, other cytokines, IL-3, interferon gamma (IFN gamma), IL-2, platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha), failed to stimulate either GM-CSF or G-CSF production, whether alone or in the presence of IL-1. These results suggest that cytokine-stimulated synovial fibroblasts may be a major source of intraarticular CSF production in the joints of patients with inflammatory arthritis; as a result, monocyte/macrophages and granulocytes may be activated, leading to perpetuation of the inflammation and destructive events occurring in these lesions.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3