Amplification by the polymerase chain reaction of hypervariable regions of the human genome for evaluation of chimerism after bone marrow transplantation

Author:

Ugozzoli L1,Yam P1,Petz LD1,Ferrara GB1,Champlin RE1,Forman SJ1,Koyal D1,Wallace RB1

Affiliation:

1. Department of Molecular Biochemistry, City of Hope National Medical Center, Duarte, CA.

Abstract

Abstract We combined the polymerase chain reaction (PCR) with oligonucleotide hybridization as a novel and sensitive technique to evaluate posttransplant chimerism. Specific oligonucleotides for hybridization were synthesized homologous to tandemly repetitive core sequences of regions with a variable number of tandem repeats (VNTRs). Polymorphisms at such loci result from allelic differences in the number of repeats. Primers flanking the repeat region of each of the corresponding VNTRs were used for amplification. Recipient and donor pretransplant DNA and recipient posttransplant DNA were amplified. The resultant fragments were analyzed after gel electrophoresis either by hybridization in-gel or after Southern transfer. To confirm our findings, we also performed standard assays of restriction fragment length polymorphisms (RFLPs). Evaluation of 13 selected cases indicated mixed chimerism (4), complete chimerism (5), recurrence of leukemia (2), and endogenous repopulation of hematopoiesis (2) after marrow transplantation. Sensitivity of the method was determined by mixing various proportions of recipient and donor DNA; the limit of detection of the minor component in a mixture was 0.1%. PCR data correlated with RFLP data in all cases except two in which PCR proved more sensitive than RFLP. PCR amplification of VNTRs combined with oligonucleotide hybridization is a novel technique for documenting posttransplant chimerism and has advantages over RFLP analysis: high sensitivity, use of small amounts of DNA (250 ng), ease of preparation of DNA, elimination of need for restriction enzymes, and the ability to complete studies in 2 days.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3