Affiliation:
1. Department of Pediatrics University of Massachusetts Medical School, Worcester 01655.
Abstract
Abstract
We have used a cloned cDNA for the major human selenoprotein, glutathione peroxidase (GPx), to assess the mode of regulation of human GPx gene (GPX-1) expression by selenium. When the HL-60 human myeloid cell line is grown in a selenium-deficient medium, GPx enzymatic activity decreases 30-fold compared with selenium-replete cells. Upon return to a medium containing selenium in the form of selenite, GPx activity in the cells starts to increase within 48 hours and reaches maximal (selenium-replete) levels at 7 days. Steady-state immunoreactive protein levels correlate with enzymatic activity. Cycloheximide inhibits the rise in GPx activity that accompanies selenium replenishment, indicating that protein synthesis is required for the increase. However, GPx mRNA levels and the rate of transcription of the human GPx gene change very little and thus appear to be independent of the selenium supply. Thus the human GPx gene appears to be regulated post-transcriptionally, probably cotranslationally, in response to selenium availability.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献