Factor-independent erythropoietic progenitor cells in leukemia induced by the myeloproliferative leukemia virus

Author:

Wendling F1,Penciolelli JF1,Charon M1,Tambourin P1

Affiliation:

1. Laboratoire Immunologie et Oncologie des Maladies Retrovirales, INSERM U152, Paris, France.

Abstract

Abstract The myeloproliferative leukemia virus (MPLV), a novel murine retroviral complex that does not transform fibroblasts, has been shown to cause an acute leukemia in adult mice accompanied by a progressive polycythemia. The present study demonstrates that, on in vivo inoculation, MPLV induces a rapid suppression of growth factor requirement for in vitro colony formation by both the late and the primitive erythroid progenitor cells. CFU-e-derived erythrocytic colonies developed and differentiated in semi-solid medium without the addition of erythropoietin (Epo). In addition, the formation of CFU-e colonies was not altered by the presence of specific neutralizing Epo antibodies. In the spleen, the CFU-e pool size increased rapidly up to 30-fold. By day 6 postinfection, 100% of these progenitor cells were Epo-independent. The in vivo effects of MPLV-infection on early erythroid progenitor cell compartments were examined in cultures grown for seven days. The concentration of erythroid progenitor cells was twofold elevated in spleen from MPLV-infected mice. As early as day 4 postinfection, 50% of these progenitors produced fully hemoglobinized colonies in serum-free cultures without the addition of interleukin-3 (IL-3) and Epo. Most spontaneous colonies were large and contained up to 10(5) cells per colony. They were composed of either erythroblasts only (16%) or erythroblasts and megakaryocytes (70%); few of them were multipotential (14%). In the marrow, the total number of BFU-e was reduced and only few factor-independent bursts were observed, suggesting a rapid migration of infected progenitors from marrow to spleen. Furthermore, the data show that abnormal erythropoiesis was due to the replication defective MPLV information and was not influenced by the Fv-2 locus.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3