Generation of osteoclasts from isolated hematopoietic progenitor cells

Author:

Kurihara N1,Suda T1,Miura Y1,Nakauchi H1,Kodama H1,Hiura K1,Hakeda Y1,Kumegawa M1

Affiliation:

1. Department of Periodontology, Meikai University School of Dentistry, Japan.

Abstract

Abstract A variety of studies have shown that osteoclasts originate from bone marrow, but their exact progenitors and differentiation pathway remain unclear. The treatment of mice with a high dose of 5-fluorouracil (5- FU) results in an enrichment for primitive hematopoietic progenitors; using this procedure, we prepared a new class of murine hematopoietic colonies that had very high secondary plating efficiencies in vitro. When spleen cells from mice pretreated in vivo with 5-FU were cultured in the presence of methylcellulose medium containing recombinant interleukin-3 (rIL-3), small colonies consisting of blast cells with little sign of differentiation developed on day 7 of culture. We lifted these blast colonies, pooled them, and replated them as secondary methylcellulose cultures in the presence of rIL-3 and erythropoietin. Approximately 60% of the cells formed colonies comprising various combinations of neutrophils, macrophages, eosinophils, mast cells, megakaryocytes, and erythroblasts. We replated such blast cells into microtiter wells and cultured them in the presence of rIL-3 (100 U/mL) or recombinant granulocyte-macrophage colony stimulating factor (GM- CSF) (100 U/mL) plus 1.25(OH)2D3 (10(-7) mol/L). Multinucleated cells appeared from day 14 of culture and approximately 100 giant cells per well were scored on day 21 of culture. Parathyroid hormone (1 U/mL) also induced the multinucleated cell formation. May-Grunwald-Giemsa staining revealed the large cells containing many nuclei in their cytoplasm, which is characteristic of bone-resorbing cells or osteoclasts. These cells showed a tartrate-resistant acid phosphatase (TRAP) activity. Calcitonin caused a striking shape change in these cells and suppressed the formation of multinucleated cells. Moreover, electron microscopy shows that these cells were able to resorb fetal calvariae. In the presence of r granulocyte-colony stimulating factor, r macrophage-colony stimulating factor, or r interleukin-6 plus 1.25(OH)2D3, formation of TRAP-positive multinucleated cells was lower compared with the support of rIL-3 or rGM-CSF. Mature macrophages collected from colonies did not form the multinucleated cells as described above, even in the presence of rIL-3 and 1.25(OH)2D3. Moreover, to exclude the possibility that osteoclasts generated from non-blast cells, we performed a cloning experiment from one isolated blast cell and demonstrated that single cells differentiate into osteoclasts or macrophages in the presence of rIL-3 with or without 1.25(OH)2D3. This system will provide a useful model for further analysis of osteoclast formation in vitro.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 156 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3