Induction of transforming growth factor-beta 1 (TGF-beta 1), receptor expression and TGF-beta 1 protein production in retinoic acid-treated HL-60 cells: possible TGF-beta 1-mediated autocrine inhibition

Author:

Falk LA1,De Benedetti F1,Lohrey N1,Birchenall-Roberts MC1,Ellingsworth LW1,Faltynek CR1,Ruscetti FW1

Affiliation:

1. Biological Carcinogenesis and Development Program, Program Resources, Inc, Dyn Corp, NCI-Frederick Cancer Research and Development Center, MD 21702.

Abstract

Abstract Treatment of HL-60 cells, a human promyelocytic leukemia cell line, with the vitamin A derivative retinoic acid (RA) for 7 days resulted in a dose-dependent decrease in proliferation and increase in granulocytic differentiation. The role of transforming growth factor-beta 1 (TGF- beta 1), a protein with pleiotropic effects on the proliferation and differentiation of various cell types, was examined during RA-induced differentiation of HL-60 cells. Although TGF-beta 1 alone had little effect on proliferation or differentiation of HL-60 cells, addition of TGF-beta 1 to HL-60 cells treated with a suboptimum concentration of RA (1.0 nmol/L) resulted in a marked decrease in proliferation with no effect on granulocytic differentiation. Studies of the mechanism of RA- induced TGF-beta sensitivity showed that although untreated HL-60 cells expressed low levels of TGF-beta 1 binding proteins on the cell surface, the levels were increased in a dose-dependent manner after RA treatment. Maximum induction was achieved after treatment with 10 nmol/L RA and consisted predominantly of the 65-Kd TGF-beta 1 receptor type. Moreover, RA treatment also resulted in a dose-dependent increase in both TGF-beta 1 steady-state mRNA expression and production of active TGF-beta with maximum induction at 10 nmol/LRA. RA treatment of HL-60 cells had no effect on TGF-beta 2 and TGF-beta 3 mRNA expression. These data suggest that the effects of RA may be mediated by a TGF-beta 1-mediated autocrine antiproliferative loop during differentiation of HL-60 cells.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3