Inhibition of heparanase-mediated degradation of extracellular matrix heparan sulfate by non-anticoagulant heparin species

Author:

Bar-Ner M,Eldor A,Wasserman L,Matzner Y,Cohen IR,Fuks Z,Vlodavsky I

Abstract

Abstract Incubation of human platelets, human neutrophils, or highly metastatic mouse lymphoma cells with sulfate-labeled extracellular matrix (ECM) results in heparanase-mediated release of labeled heparan sulfate cleavage fragments (0.5 less than Kav less than 0.85 on Sepharose 6B). This degradation was inhibited by native heparin both when brought about by intact cells or their released heparanase activity. Degradation of heparan sulfate in ECM may facilitate invasion of normal and malignant cells through basement membranes. The present study tested the heparanase inhibitory effect of nonanticoagulant species of heparin that might be of potential use in preventing heparanase mediated extravasation of bloodborne cells. For this purpose, we prepared various species of low-sulfated or low-mol-wt heparins, all of which exhibited less than 7% of the anticoagulant activity of native heparin. N-sulfate groups of heparin are necessary for its heparanase inhibitory activity but can be substituted by an acetyl group provided that the O-sulfate groups are retained. O-sulfate groups could be removed provided that the N positions were resulfated. Total desulfation of heparin abolished its heparanase inhibitory activity. Heparan sulfate was a 25-fold less potent heparanase inhibitor than native heparin. Efficiency of low-mol-wt heparins to inhibit degradation of heparan sulfate in ECM decreased with their main molecular size, and a synthetic pentasaccharide, representing the binding site to antithrombin III, was devoid of inhibitory activity. Similar results were obtained with heparanase activities released from platelets, neutrophils, and lymphoma cells. We propose that heparanase inhibiting nonanticoagulant heparins may interfere with dissemination of bloodborne tumor cells and development of experimental autoimmune diseases.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3