Molecular analysis of δ-aminolevulinate dehydratase deficiency in a patient with an unusual late-onset porphyria

Author:

Akagi Reiko1,Nishitani Chiaki1,Harigae Hideo1,Horie Yutaka1,Garbaczewski Luba1,Hassoun A.1,Mercelis R.1,Verstraeten L.1,Sassa Shigeru1

Affiliation:

1. From The Rockefeller University, New York, NY; Okayama Prefectural University, Soja, Japan; Tohoku University School of Medicine, Sendai, Japan; Universite de Catholique de Louvain, Brussels, Belgium; and University Hospital of Antwerp, Antwerp, Belgium.

Abstract

Abstract Cloning, expression, and genotype studies of the defective gene for δ-aminolevulinate dehydratase (ALAD) in a patient with an unusual late onset of ALAD deficiency porphyria (ADP) were carried out. This patient was unique in that he developed the inherited disease, together with polycythemia, at the age of 63. ALAD activity in erythrocytes of the patient was less than 1% of the normal control level. ALAD complementary DNA (cDNA) isolated from the patient's Epstein-Barr virus (EBV)–transformed lymphoblastoid cells had 2 base transitions in the same allele, G177 to C and G397 to A, resulting in amino acid substitutions K59N and G133R, respectively. It has been verified that the patient had no other ALAD mutations in this and in the other allele. By restriction fragment length polymorphism (RFLP) analysis, all family members of the proband who had one-half ALAD activity compared with the ALAD activity of the healthy control were shown to have the same set of base transitions. Expression of ALAD cDNA in CHO cells revealed that K59N cDNA produced a protein with normal ALAD activity, while G133R and K59N/G133R cDNA produced proteins with 8% and 16% ALAD activity, respectively, compared with that expressed by the wild type cDNA. These findings indicate that while the proband was heterozygous for ALAD deficiency, the G397 to A transition resulting in the G133R substitution is responsible for ADP, and the clinical porphyria developed presumably due to an expansion of the polycythemic clone in erythrocytes that carried the mutant aladallele.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3