Affiliation:
1. From the Department of Molecular Biology, Molecular Immunology Unit, Flanders Interuniversity Institute for Biotechnology and Ghent University, Ghent, Belgium.
Abstract
Abstract
Clonal deletion and anergy are 2 mechanisms used by the immune system to establish peripheral tolerance. In vitro, these mechanisms are induced in T lymphocytes by triggering the T-cell receptor (signal 1) in the absence of costimulation (signal 2). T-cell clones have been shown either to become anergic or to die in response to signal 1 alone; yet the factors that govern this choice remain unknown. This study evaluated the influence of the cytokines interleukin (IL)-2 and IL-15 on the response of the Th1 clone hemagglutinin (T-HA) to signal 1, delivered by stimulation with immobilized anti-CD3 monoclonal antibody (mAb). The response induced by immobilized anti-CD3 mAb was dependent on the cytokine milieu; in the presence of IL-2, T-HA cells were subject to apoptosis, whereas in the presence of IL-15 the cells remained viable but showed proliferative unresponsiveness. After release from the anti-CD3 stimulus, the IL-15-rescued T-HA cells regained responsiveness to IL-2 and IL-15 growth factor activity. However, they were unable to proliferate when stimulated with their cognate antigen presented by professional antigen-presenting cells (signal 1 plus 2) and thus had acquired an anergic phenotype. These data assign a novel function to the previously reported antiapoptotic activity of IL-15, namely, the capacity to redirect the T-cell response to partial stimulation from clonal deletion to anergy. Furthermore, they emphasize that the cytokine environment can critically influence the outcome of a tolerizing stimulus.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献