Activity of Thymidine Kinase and of Polymerase α as Well as Activity and Gene Expression of Deoxycytidine Deaminase in Leukemic Blasts Are Correlated With Clinical Response in the Setting of Granulocyte-Macrophage Colony-Stimulating Factor–Based Priming Before and During TAD-9 Induction Therapy in Acute Myeloid Leukemia

Author:

Jahns-Streubel Gerlinde1,Reuter Christoph1,Auf der Landwehr Ulrike1,Unterhalt Michael1,Schleyer Eberhard1,Wörmann Bernhard1,Büchner Thomas1,Hiddemann Wolfgang1

Affiliation:

1. From the Department of Hematology and Oncology, Georg-August-University, Göttingen, Germany; and the Department of Hematology and Oncology, Westfälische Wilhelms University, Münster, Germany.

Abstract

AbstractThe present study was undertaken to assess the predictive value of pretherapeutic determinants of ara-C metabolism and proliferative activity of leukemic blasts for early response to antileukemic therapy in the setting of granulocyte-macrophage colony-stimulating factor (GM-CSF )–based priming before and during TAD-9 induction in 36 consecutive patients with de novo acute myeloid leukemia (AML). Ara-C metabolism was assessed by the activities of deoxycytidine kinase (DCK), deoxycytidine deaminase (DCD), DNA polymerase α (Poly α), and overall polymerase (overall Poly). The fraction of cells in S phase (%S phase) and thymidine kinase (TK) activity were determined as a measure of proliferative activity. Early response to therapy was defined by the percentage of leukemic blasts in the bone marrow 5 to 7 days after completion of TAD-9 with less than 5% signaling an adequate response and greater than 5% indicating an inadequate early reduction, respectively. While neither %S phase, DCK, nor overall Poly activity were predictive for early response, TK and Poly α activities were significantly higher for cases with adequate blast cell clearance. The respective median values were for TK 3.8 versus 1.85 pmol/min/mg protein (P = .012), and for Poly α 1.9 versus 0.69 pmol/min/mg protein (P = .014). An inverse relation was detected for DCD activity which was significantly lower in responding patients with a median of 0.33 nmol/min/mg protein (range, 0.0 to 29.5) as compared to a median of 5.1 nmol/min/mg protein (range, 0.11 to 8.45) in early nonresponders, (P = .009). Taking the respective median values as arbitrary cut-points for high or low enzyme activities, responders and nonresponders could be discriminated prospectively. Hence, 14 of 16 cases (88%) with DCD activities below the median of 1.56 nmol/min/mg protein responded as compared to only 3 of 14 (22%) patients with higher DCD activities (P = .0004). From the 15 patients with TK activity above the overall median of 3.2 pmol/min/mg protein, 11 cases (73%) achieved an adequate blast cell clearance while only 6 of 17 cases (35%) with lower values responded (P = .035). Similarly, 12 of 15 patients (80%) with high Poly α levels (>1.22 pmol/min/mg protein) responded to induction therapy as compared to only 5 of 14 patients (36%) with lower enzyme activities (P = .02). By logistic regression analysis of enzyme activities, DCD activity was found to be the most sensitive parameter to predict an adequate blast cell clearance (P = .032). Activities of DCD and TK were not only associated with initial response but were also found predictive for remission duration. Hence, from 11 patients with low TK levels 8 (73%) relapsed within 1 year, whereas only 2 of 11 (18%) patients with high TK activity experienced a recurrence of their disease (P = .015). Six of 9 (66%) patients with higher than median DCD levels relapsed within 1 year, whereas 10 of 14 patients (71%) with lower DCD levels had a longer remission duration (P = .085). Analysis of DCD gene expression at the mRNA level by a semi-quantitative reverse transcriptase-polymerase chain reaction method showed that a high transcription rate of the DCD gene was associated with high enzyme activities and vice versa. Hence, the observed intraindividual differences in DCD activity are a reflection of differences in gene activity and transcription rate rather than of variants in translation. Although further analyses are needed to elucidate the molecular mechanisms that determine the variation of enzyme activities in individual patients, the present study strongly suggests that pretherapeutic determination of TK and Poly α as well as of DCD allows to predict response to TAD-9 + GM-CSF induction therapy and may provide the means for the development of a risk adapted treatment strategy.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference52 articles.

1. Therapy of acute myelogenous leukemia.;Gale;Semin Hematol,1987

2. Cytogenetics and their prognostic value in de novo acute myeloid leukemia: A report on 283 cases.;Fenaux;Br J Haematol,1989

3. Prognostic significance of karyotype in de novo adult acute myeloid leukemia.;Dastugue;Leukemia,1995

4. Inhibition of bcl-2 with antisense oligonucleotides induces apoptosis and increases the sensitivity of AML blasts to ara-C.;Keith;Leukemia,1995

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3