Investigation of human spleen dendritic cell phenotype and distribution reveals evidence of in vivo activation in a subset of organ donors

Author:

McIlroy Dorian1,Troadec Christelle1,Grassi Fernanda1,Samri Assia1,Barrou Benoı̂t1,Autran Brigitte1,Debré Patrice1,Feuillard Jean1,Hosmalin Anne1

Affiliation:

1. From the Laboratoire d'Immunologie Cellulaire et Tissulaire URA CNRS 625, Service d'Urologie, Hôpital de La Pitié-Salpêtrière, Paris; and Service d'Hématologie biologique, Hôpital Avicenne, Bobigny, France.

Abstract

Although the mouse spleen dendritic cell (DC) is perhaps the most intensively studied DC type, little has been published concerning its human equivalent. In this report, rare event flow cytometry and in situ immunofluorescence were used to study the surface phenotype and distribution of HLA-DR+CD3−14−16−19− human spleen DC. Spleens from organ donors with different clinical histories were used. Most (81% ± 9%; n = 14) spleen DCs expressed high levels of the integrin CD11c. CD11c+ DCs were distributed in 3 distinct regions—the peri-arteriolar T-cell zones, the B-cell zones, and the marginal zone, where they formed a ring of cells surrounding the white pulp, just inside a ring of CD14+ red pulp macrophages, apparently more regularly organized than the previously described marginating DC population in the mouse spleen. The T-cell zones contained CD86+ DCs, among which a subpopulation expressed CD83. These mature/activated CD86+DCs represented a minority (12% ± 8%) of total spleen DCs in most organ donors: most spleen DCs are immature. In 3 of 18 (17%) donors, however, most (54%-81%) of spleen DCs were CD86+, suggesting that in vivo DC activation had occurred. In one donor, a radical shift in DC distribution from the marginal zone to the T-cell zones was also observed. This activation of spleen DCs in vivo was reminiscent of the effects of experimental microbial product injection in mice, and it seemed to correlate with bacterial infection or multiple trauma.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3