Affiliation:
1. From the Department of Internal Medicine, University of Iowa Hospitals and Clinics and VA Medical Center, Iowa City, and DAKO GmbH, Hamburg, Germany.
Abstract
Abstract
Chronic rejection of transplanted allografts is the major cause of graft loss after clinical solid organ transplantation. Recent data link the indirect presentation of allopeptides to chronic graft loss; thus, identification of immunodominant epitopes on major histocompatibility complex (MHC) antigens could significantly contribute to establishing novel ways for monitoring and managing chronic rejection. Here, we show that synthetic allo-MHC–derived peptides covering the polymorphic region 56 to120 of HLA-B7 modulate alloresponses. In particular, the 2 β-pleated sheet-derived peptides covering residues 91 to 105 and 96 to 120, respectively, but not sequences from the α1 helix, were presented by autologous peripheral blood lymphocytes to induce T-cell proliferation. In addition, the 2 β-pleated sheet-derived peptides and the α1-derived peptide residues 60 to 75 abrogated lysis of HLA-B7 target cells by anti–HLA-B7 cytotoxic T lymphocytes (CTLs). Although most residues between 91 and 120 are normally not directly accessible to T cells, our results indicate that peptides derived from the lower surface of the peptide-binding groove of HLA-B7 are immunodominant in HLA-B7 alloresponses. To characterize the binding and stability of allopeptides to T cells, the 62-70 peptide—derived from the 60-75 allopeptide that blocked cytotoxicity of anti–HLA-B7 CTL—was synthesized and coupled with fluorescein isothiocyanate. The peptide specifically labeled anti-B7 CTL, but not anti–HLA-A2 CTL as measured by flow cytometry. Peptide binding to CTL was specific at 4°C and remained stable for 12 hours, whereas it remained stable for less than 2 hours at 37°C. These studies allow the identification of HLA-B7 T-cell epitopes and reveal for the first time a novel, previously unrecognized application of synthetic HLA-derived allopeptides to visualize alloreactive T cells.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献