Temporal Synthesis of Band 3 Oligomers During Terminal Maturation of Mouse Erythroblasts. Dimers and Tetramers Exist in the Membrane as Preformed Stable Species

Author:

Hanspal Manjit1,Golan David E.1,Smockova Yva1,Yi Scott J.1,Cho Michael R.1,Liu Shih-Chun1,Palek Jiri1

Affiliation:

1. From the Department of Biomedical Research, St Elizabeth's Medical Center, Tufts University School of Medicine, Boston; and the Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Hematology Division, Brigham and Women's Hospital, Boston, MA.

Abstract

Band 3, the anion transport protein of the erythrocyte membrane, exists in the membrane as a mixture of dimers (B3D) and tetramers (B3T). The dimers are not linked to the skeleton and constitute the free mobile band 3 fraction. The tetramers are linked to the skeleton by their interaction with ankyrin. In this report we have examined the temporal synthesis and assembly of band 3 oligomers into the plasma membrane during red cell maturation. The oligomeric state of newly synthesized band 3 in early and late erythroblasts was analyzed by size-exclusion high-pressure liquid chromatography of band 3 extracts derived by mild extraction of plasma membranes with the nonionic detergent C12E8 (octaethylene glycol n-dodecyl monoether). This analysis revealed that at the early erythroblast stage, the newly synthesized band 3 is present predominantly as tetramers, whereas at the late stages of erythroid maturation, it is present exclusively as dimers. To examine whether the dimers and tetramers exist in the membrane as preformed stable species or whether they are interconvertible, the fate of band 3 species synthesized during erythroblast maturation was examined by pulse-chase analysis. We showed that the newly synthesized band 3 dimers and tetramers are stable and that there is no interconversion between these species in erythroblast membranes. Pulse-chase analysis followed by cellular fractionation showed that, in early erythroblasts, the newly synthesized band 3 tetramers are initially present in the microsomal fraction and later incorporated stably into the plasma membrane fraction. In contrast, in late erythroblasts the newly synthesized band 3 dimers move rapidly to the plasma membrane fraction but then recycle between the plasma membrane and microsomal fractions. Fluorescence photobleaching recovery studies showed that significant fractions of B3T and B3D are laterally mobile in early and late erythroblast plasma membranes, respectively, suggesting that many B3T-ankyrin complexes are unattached to the membrane skeleton in early erythroblasts and that the membrane skeleton has yet to become tightly organized in late erythroblasts. We postulate that in early erythroblasts, band 3 tetramers are transported through microsomes and stably incorporated into the plasma membrane. However, when ankyrin synthesis is downregulated in late erythroblasts, it appears that B3D are rapidly transported to the plasma membrane but then recycled between the plasma membrane and microsomal compartments. These observations may suggest novel roles for membrane skeletal proteins in stabilizing integral membrane protein oligomers at the plasma membrane and in regulating the endocytosis of such proteins.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3