Biochemical and Molecular Characterization of Hereditary Myeloperoxidase Deficiency

Author:

Romano Maurizio1,Dri Pietro1,Dadalt Liviana1,Patriarca Pierluigi1,Baralle Francisco E.1

Affiliation:

1. From the International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; Dipartimento di Fisiologia e Patologia, Università di Trieste, Trieste, Italy; and the Dipartimento di Pediatria, Padova, Italy.

Abstract

AbstractHereditary myeloperoxidase (MPO) deficiency is a neutrophil disorder characterized by the lack of peroxidase activity. Cytochemical, biochemical, spectroscopic, immunocytochemical, and genetic studies were carried out on a 5-year-old MPO-deficient subject and on her parents. The father was also MPO-deficient, whereas the mother had 24% of normal MPO activity. Although the typical absorption spectrum of MPO was absent in both the father and daughter, the father's neutrophils, and not those of the daughter, contained material antigenically related to MPO. In the MPO gene of the father, two mutations were found, each located in a different allele: a T → C transition, causing the nonconservative replacement M251T and a 14-base deletion within exon 9. The M251T substitution occurred in the carboxy-terminal region of the light chain that is included in the heme pocket. The daughter inherited the 14-base deletion from her father. The study of the MPO mRNAs present in liquid cultures of granulocyte precursors surprisingly showed that the same genetic defect, ie, the 14-base deletion, seemed to exhibit different mRNA phenotypes in the father and the daughter. In fact, mRNA derived from the 14-base–deleted allele was not found in the father and an aberrantly spliced MPO mRNA with a 77-base deletion of exon 9, which includes the 14-base deletion and leads to the generation of a premature stop codon, was found in the daughter. The possibility that Δ77 mRNA could derive from other mutations linked to the Δ14 allele was dismissed because no sequence differences were found in the region (exons and exon-intron junctions). Our data indicate that the alteration of the mRNA context caused by the 14-base deletion provide a basis for the 77-base deletion in the mRNA processing. Since the granulocyte precursors from the liquid cultures of the father were more differentiated than those from the daughter, the observed different behavior of the 14-base–deleted allele in the father and daughter may be the result of a differentiation-stage dependent control of altered spliced mRNA, which may be tolerated during the early stages of differentiation but degraded at later stages. In the liquid cultures of the daughter's cells, in addition to the mRNA with the 77-base deletion, a mRNA with the wild type sequence was also found. This mRNA was inherited from the mother, since no mutations were found in her MPO cDNA and MPO gene. The MPO defect might be caused by a regulatory mutation that induces the MPO gene switch off at an early stage of granulocyte differentiation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3