A Critical Role for N-ethylmaleimide–Sensitive Fusion Protein (NSF) in Platelet Granule Secretion

Author:

Polgár János1,Reed Guy L.1

Affiliation:

1. From the Harvard School of Public Health, Cardiovascular Biology Laboratory, Boston, MA.

Abstract

AbstractThe molecular mechanisms that regulate membrane targeting/fusion during platelet granule secretion are not yet understood.N-ethylmaleimide-sensitive fusion protein (NSF), soluble NSF attachment proteins (SNAPs), and SNAREs (SNAP receptors) are elements of a conserved molecular machinery for membrane targeting/fusion that have been detected in platelets. We examined whether NSF, an ATPase that has been shown to play a critical role in membrane targeting/fusion in many cell types, is necessary for platelet granule secretion. Peptides that mimic NSF sequence motifs inhibited both -granule and dense-granule secretion in permeabilized human platelets. This inhibitory effect was sequence-specific, because neither proteinase K-digested peptides nor peptides containing similar amino acids in a scrambled sequence inhibited platelet secretion. The peptides that inhibited platelet granule secretion also inhibited the human recombinant -SNAP–stimulated ATPase activity of recombinant NSF. It was also found that anti-NSF antibodies, which inhibited recombinant -SNAP–stimulated ATPase activity of NSF, inhibited platelet granule secretion in permeabilized cells. The inhibition by anti-NSF antibodies was abolished by the addition of recombinant NSF. These data provide the first functional evidence that NSF plays an important role in platelet granule secretion.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Platelet Physiology;Seminars in Thrombosis and Hemostasis;2024-04-23

2. Hypobaric hypoxia drives selection of altitude-associated adaptative alleles in the Himalayan population;Science of The Total Environment;2024-02

3. Platelet Secretion;Platelets;2019

4. Kinesin-1 Is a New Actor Involved in Platelet Secretion and Thrombus Stability;Arteriosclerosis, Thrombosis, and Vascular Biology;2018-05

5. The life cycle of platelet granules;F1000Research;2018-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3