Reconstitution of bactericidal activity in chronic granulomatous disease cells by glucose-oxidase–containing liposomes

Author:

Gerber Claudia E.1,Bruchelt Gernot1,Falk Ulrike B.1,Kimpfler Andrea1,Hauschild Oliver1,Kuçi Selim1,Bächi Thomas1,Niethammer Dietrich1,Schubert Rolf1

Affiliation:

1. From the University Children's Hospital, Department of Hematology and Oncology, Tübingen, Germany; University of Freiburg, Pharmaceutical Institute, Department of Pharmaceutical Technology, Freiburg, Germany; and University of Zurich, Laboratory for Electron Microscopy, Zurich, Switzerland.

Abstract

AbstractChronic granulomatous disease (CGD) is an inherited primary immunodeficiency characterized by phagocytes devoid of a functioning nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. The failure of CGD phagocytes to produce reactive oxygen species (ROS) results in a marked increase in the susceptibility of affected patients to life-threatening bacterial and fungal infections. This study investigated whether loading of CGD phagocytes with glucose oxidase (GO)–containing liposomes (GOLs) could restore cellular production of bactericidal ROS (eg, H2O2 and HOCl) in vitro. Results indicate that GO encapsulated in liposomes enabled NADPH oxidase-deficient phagocytes to use H2O2 for the production of highly bactericidal HOCl. The intracellular colocalization of bacteria and liposomes (or liposome-derived ferritin) was demonstrated by confocal laser microscopy and electron microscopy. After uptake of GOLs (approximately 0.2 U/mL at 1 mM total lipid concentration, size approximately 180 nm), CGD granulocytes produced HOCl levels comparable to those of normal phagocytes. Remarkably, after treatment with GOLs, CGD phagocytes killed Staphylococcus aureus as efficiently as normal granulocytes. Moreover, treated cells retained sufficient motility toward chemotactic stimuli as measured by chemotaxis assay. Side effects were evaluated by measuring the H2O2 concentrations and the production of methemoglobin in whole blood. These studies revealed that H2O2 produced by GOLs was degraded immediately by the antioxidative capacity of whole blood. Elevated methemoglobin levels were observed only after application of extremely high amounts of GOLs (2 U/mL). In summary, the application of negatively charged GOLs might provide a novel effective approach in the treatment of patients with CGD at high risk for life-threatening infections.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3